metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yip Foo Win,^a Teoh Siang Guan^a and Bohari M. Yamin^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.022 wR factor = 0.060 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-amino-5-nitrobenzoato- $\kappa^2 O, O'$)di-*n*-butyltin(IV)

The title compound, $[Sn(C_4H_9)_2(C_7H_5N_2O_4)_2]$, has twofold rotation symmetry, and two 2-amino-5-nitrobenzoate ligands are chelated to the dibutyltin unit through both O atoms of the carboxylate group in a six-coordinate environment. There are intra- and intermolecular $N-H \cdots O$ hydrogen bonds, forming one-dimensional chains parallel to the *b* axis.

Received 7 November 2005 Accepted 30 November 2005 Online 7 December 2005

Comment

The reaction of dibutyltin oxide with substituted aromatic carboxylic acids such as 3-hydroxyphthalic acid and (*E*)-3-(4methoxyphenyl)-2-phenyl-2-propenoic acid leads to the formation of distannoxane-type complexes $[Sn_4(C_4H_9)_8-(C_8H_5O_3)_4(\mu-O)_2]$ (Khoo & Hazell, 1999) and $[Sn_4(C_4H_9)_8-(C_{17}H_{15}O_2)_4O_2]$ (Parvez *et al.*, 2004), respectively. However, the reaction of dibutyltin oxide with 2-amino-5-nitrobenzoic acid gave a normal monomeric condensation reaction product, (I).

In (I), the molecule has a twofold rotation symmetry (Fig. 1) and is isostructural with di-*n*-butylbis(thiophene-3-carboxylato-O,O')tin(IV), (II) (Yahyi *et al.*, 2001). The ligands are chelated to atom Sn1 asymmetrically *via* both O atoms of the carboxylate groups in a bidentate manner. The geometry of the Sn atom is highly distorted octahedral (Table 1). The Sn-O bond lengths are in agreement with the isostructural analogue (II) [Sn-O = 2.1233 (13) and 2.5641 (14) Å]. The chelated aminobenzoate fragment Sn1/O3/O4/N1/C1-C7 is planar, with a maximum deviation from the least-squares plane of 0.029 (2) Å for atom O3. The molecules are stabilized by intra- and intermolecular N-H···O hydrogen bonds (Table 2), forming one-dimensional chains parallel to the *b* axis (Fig. 2).

Experimental

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved A solution of di-*n*-butyltin(IV) oxide (0.75 g, 3 mmol) and (2-amino-5-nitro)benzoic acid (1.09 g, 6 mmol) in methanol (60 ml) was

Figure 1

Molecular structure of (I), with 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by $(1 - x, y, \frac{1}{2} - z)$.

refluxed for *ca* 4 h. The water formed during the reaction was removed by azeotropic dehydration using a Dean-Stark apparatus. The clear yellow solution was filtered and left for evaporation at room temperature. Yellow crystals were obtained after two weeks (yield 1.60 g, 90%; m.p. 482-483 K). Analysis found: C 43.91, H 4.46, N 8.85, Sn 19.08%; calculated: C 44.3, H 4.7, N 9.4, Sn 19.9%.

> $D_x = 1.581 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 5761 reflections $\theta = 2.1 - 25.5^{\circ}$ $\mu = 1.08~\mathrm{mm}^{-1}$ T = 298 (2) KPlate, light yellow $0.48 \times 0.44 \times 0.18 \ \mathrm{mm}$

2328 independent reflections

 $R_{\rm int} = 0.015$

 $\theta_{\rm max} = 25.5^{\circ}$ $h = -17 \rightarrow 17$

 $k=-10\rightarrow 10$

 $l = -19 \rightarrow 24$

2257 reflections with $I > 2\sigma(I)$

 $= 1/[\sigma^2(F_0^2) + (0.0309P)^2]$ + 2.0841P] where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

$[Sn(C_4H_9)_2(C_7H_5N_2O_4)_2]$
$M_r = 595.17$
Monoclinic, $C2/c$
$a = 14.356 (4) \text{\AA}$
b = 9.006 (2) Å
c = 20.155 (5) Å
$\beta = 106.305 \ (4)^{\circ}$
$V = 2501.0 (11) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEX CCD areadetector diffractometer (i) scans Absorption correction: multi-scan (SADABS: Bruker, 2000) $T_{\min} = 0.626, \ T_{\max} = 0.830$ 6494 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.03)]$
$R[F^2 > 2\sigma(F^2)] = 0.022$	+ 2.0841P]
$wR(F^2) = 0.060$	where $P = (F_0^2 + 2)$
S = 1.14	$(\Delta/\sigma)_{\rm max} < 0.001$
2328 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
160 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Sn1-O4	2.1238 (15)	Sn1-O3	2.4665 (16)
Sn1-C8	2.127 (2)		
O4-Sn1-O4 ⁱ	85.68 (8)	C8 ⁱ -Sn1-O3	89.31 (8)
C8 ⁱ -Sn1-C8	143.56 (14)	C8-Sn1-O3	84.95 (8)
O4-Sn1-O3	56.37 (6)	$O3-Sn1-O3^{i}$	161.57 (7)
O4 ⁱ -Sn1-O3	142.05 (5)		

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

	a po	
χγ.	Y Y	9
	a far a	
		×ΩÌ.
		Los Los
		XI.
b who		
LAS A		()
		Por por
and the second		X I.
and		
	<u>~</u> ~	U

Figure 2

0

0

A packing diagram of (I). The dashed lines denote hydrogen bonds.

Table 2

Hydrogen-bond	geometry	(À,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O3$	0.86	2.02	2.665 (3)	132
$N2-H2A\cdots O2^{n}$	0.86	2.47	3.036 (3)	124
$N2-H2B\cdotsO1^{ii}$	0.86	2.45	3.079 (3)	130

Symmetry code: (ii) x, y + 1, z.

H atoms were located in difference-density maps and repositioned geometrically, with N-H = 0.86 Å and C-H = 0.93-0.97 Å. They were constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H})$ values of 1.2 (1.5 for methyl) times $U_{eq}(C,N)$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

metal-organic papers

The authors thank the Malaysian Government, Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for the research grants SAGA 304/PKimia/653008/A118 and facilities.

References

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.603) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Parvez, M., Sadiq-ur-Rehman, Shahid, K., Ali, A. & Mazhar, M. (2004). Acta Cryst. E60, m1465–m1467.
- Sheldrick, G. M. (1997). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yahyi, A., Abdelkader, E., Zidane, I., Benchat, N., El-Bali, B. & Bolte, M. (2001). Acta Cryst. E**57**, m65-m66.