Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yip Foo Win, ${ }^{\text {a }}$ Teoh Siang Guan ${ }^{\text {a }}$ and Bohari M. Yamin ${ }^{\text {b }}$ *

${ }^{\text {a }}$ School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.022$
$w R$ factor $=0.060$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-amino-5-nitrobenzoato- $\kappa^{2} O, O^{\prime}$)di-n-butyltin(IV)

The title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]$, has twofold rotation symmetry, and two 2 -amino-5-nitrobenzoate ligands are chelated to the dibutyltin unit through both O atoms of the carboxylate group in a six-coordinate environment. There are intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains parallel to the b axis.

Comment

The reaction of dibutyltin oxide with substituted aromatic carboxylic acids such as 3-hydroxyphthalic acid and (E)-3-(4-methoxyphenyl)-2-phenyl-2-propenoic acid leads to the formation of distannoxane-type complexes $\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8}\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}(\mu-\mathrm{O})_{2}\right]$ (Khoo \& Hazell, 1999) and $\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8^{-}}\right.$ $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{4} \mathrm{O}_{2}$] (Parvez et al., 2004), respectively. However, the reaction of dibutyltin oxide with 2-amino-5-nitrobenzoic acid gave a normal monomeric condensation reaction product, (I).

(I)

In (I), the molecule has a twofold rotation symmetry (Fig. 1) and is isostructural with di-n-butylbis(thiophene-3-carboxyl-ato- O, O^{\prime})tin(IV), (II) (Yahyi et al., 2001). The ligands are chelated to atom Sn 1 asymmetrically via both O atoms of the carboxylate groups in a bidentate manner. The geometry of the Sn atom is highly distorted octahedral (Table 1). The $\mathrm{Sn}-$ O bond lengths are in agreement with the isostructural analogue (II) $[\mathrm{Sn}-\mathrm{O}=2.1233$ (13) and 2.5641 (14) \AA]. The chelated aminobenzoate fragment $\mathrm{Sn} 1 / \mathrm{O} 3 / \mathrm{O} 4 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 7$ is planar, with a maximum deviation from the least-squares plane of 0.029 (2) A for atom O3. The molecules are stabilized by intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming one-dimensional chains parallel to the b axis (Fig. 2).

Experimental

A solution of di- n-butyltin(IV) oxide ($0.75 \mathrm{~g}, 3 \mathrm{mmol}$) and (2 -amino-5-nitro)benzoic acid ($1.09 \mathrm{~g}, 6 \mathrm{mmol}$) in methanol (60 ml) was

Received 7 November 2005 Accepted 30 November 2005 Online 7 December 2005

Figure 1
Molecular structure of (I), with 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by $\left(1-x, y, \frac{1}{2}-z\right)$.
refluxed for $c a 4 \mathrm{~h}$. The water formed during the reaction was removed by azeotropic dehydration using a Dean-Stark apparatus. The clear yellow solution was filtered and left for evaporation at room temperature. Yellow crystals were obtained after two weeks (yield $1.60 \mathrm{~g}, 90 \%$; m.p. 482-483 K). Analysis found: C 43.91, H 4.46, N 8.85, Sn 19.08\%; calculated: C 44.3, H 4.7, N 9.4, Sn 19.9\%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=595.17$
Monoclinic, $C 2 / c$
$a=14.356$ (4) A
$b=9.006$ (2) A
$c=20.155$ (5) A
$\beta=106.305$ (4) ${ }^{\circ}$
$V=2501.0(11) \AA^{3}$
$Z=4$

$D_{x}=1.581 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 5761 reflections
$\theta=2.1-25.5^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, light yellow
$0.48 \times 0.44 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.626, T_{\text {max }}=0.830$
6494 measured reflections
independent reflections
2257 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 24$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.060$
$S=1.14$
2328 reflections
160 parameters
H -atom parameters constrained

Figure 2
A packing diagram of (I). The dashed lines denote hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2B $\cdots \mathrm{O} 3$	0.86	2.02	$2.665(3)$	132
N2-H2 $A \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.47	$3.036(3)$	124
N2-H2B $\cdots 1^{\mathrm{ii}}$	0.86	2.45	$3.079(3)$	130

Symmetry code: (ii) $x, y+1, z$.

H atoms were located in difference-density maps and repositioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$. They were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 (1.5 for methyl) times $U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

metal-organic papers

The authors thank the Malaysian Government, Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for the research grants SAGA 304/PKimia/653008/A118 and facilities.

References

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.603) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

Khoo, L. E. \& Hazell, A. (1999). Acta Cryst. C55, 2070-2073.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Parvez, M., Sadiq-ur-Rehman, Shahid, K., Ali, A. \& Mazhar, M. (2004). Acta Cryst. E60, m1465-m1467.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yahyi, A., Abdelkader, E., Zidane, I., Benchat, N., El-Bali, B. \& Bolte, M. (2001). Acta Cryst. E57, m65-m66.

